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LARGE-SCALE WIND-TUNNEL INVESTIGATION OF THE LOW-SPEED
AFRODYNAMIC CHARACTERISTICS OF A SUPERSONIC TRANSPORT

MODEL HAVING VARTABLE-SWEEP WINGS¥

By Anthony M. Cook, Richard K. Greif, and Kiyoshi Aoyagi
Ames Research Center

SUMMARY

The results are presented as six-component aerodynamic force and moment
data obtained at various angles of attack and sideslip. Data were obtained at
a Reynolds number of 16 million, based upon the mean aerodynamic chord of the
wing swept to 75°. The investigation included variations of wing sweepback
and aspect ratio, leading-edge slat deflection and geometry, trailing-edge
flap deflection, geometry, and span extent, and horizontal-tail geometry.

The results show that all configurations tested, except one, were longi-
tudinally unstable at high 1ift. The configuration that was not unstable had
a tail in a low horizontal position, a wing sweepback angle of 25° with a
large portion of the fixed wing deflected as a leading-edge flap.

INTRODUCTION

The development of any supersonic aircraft involves combining aerodynami-
cally incompatible high- and low-speed design requirements. The variable-
sweep wing concept 1s one approach to this problem. One basic requirement in
this approach is to provide acceptable stability characteristics by minimizing
the aerodynamic center shift due to wing sweep.

Earlier concepts of variable-sweep wings (ref. 1) incorporated a longi-
tudinal translation of the wing together with change in sweep angle to elimi-
nate the aercdynamic center shift associated with changing sweep. Efforts to
avoid the mechanical difficulties inherent with longitudinal translation of
the wing resulted in the concept of the fixed outboard pivot and a fixed,
highly swept, inboard wing section designed to minimize aerodynamic center
shift (refs. 2 through 6). Small-scale results give evidence of longitudinal
instability characteristics at the stall for the high-1ift configurations of
this design. The purpose of the tests reported herein was to investigate this
longitudinal instability and the maximum 1ift characteristics of high-1ift,
variable-sweep configurations at high Reynolds numbers.

The scope of this investigation was limited to the first-order effects of
the variables considered most important: wing sweep in low-speed. cruise and

*Title, Unclassified.



high-1ift configurations, wing aspect ratio, trailing-edge flap systems,
leading-edge slats, horizontal-tail area and location, and fixed-wing leading-
edge radius and flaps.

NOTATTON
A wing area (see Reduction of Data), sq ft
. b2
AR aspect ratio, e
ac aerodynamic center
b wing span, ft
Cp drag coefficient, 9%%5
Cy, 1ift coefficient, lait
Cy rolling-moment coefficient, rolling moment
géb
Cn pitching-moment coefficient, pltchigiamoment
Cn yawing-moment coefficient, yewing moment
gAb
C side-force coefficient, side force
b gl
c chord b/2

ot

mean aerodynamic chord, %h/“ c2 dy, ft
o)

FDS flap, double slotted

FLE fixed-wing leading-edge flap

88 flap, single slotted

gg gap of leading-edge slats, fraction of chord
i horizontal-tail incidence (positive when trailing edge is down), deg
L/D lift-drag ratio

LE leading edge



av

tail length, measured from wing pivot axis to the quarter chord of the

horizontal-tail mean aerodynamic chord
dynamic pressure, 1b/sq ft
radius, fixed-wing leading edge
tail volume coefficient
streamwise distance along airfoil chord, £t
spanwise distance perpendicular to the plane of symmetry, ft
perpendicular distance above the wing-chord plane, ft
angle of attack of wing-chord plane, deg
angle of sideslip of plane of symmetry, deg

angle of deflection of control surfaces, measured normal to hinge
line, deg

average effective downwash, deg
. . . 2y

wing semispan station, -

wing taper ratio

angle of sweepback of fixed-wing leading edge, deg

angle of sweepback of tail leading edge, deg

angle of sweepback of movable-wing leading edge, deg

Subscripts
lower surface
slat, leading edge
total wing, including both variable-sweep panel and fixed wing
upper surface
wing

movable-wing leading edge



MODEL AND APPARATUS

Description of Model

The basic model consisted of a low-wing, variable-sweep transport con-
figuration. Various wing leading-edge sweepback angles ranging from 13—1/2O
to 750 were tested. Four configurations are shown installed in the wind
tunnel in the photograph of figure 1l: +two high-aspect-ratio configurations,
with low and high horizontal-tail positions (configurations A3 and Ao,
respectively); and two low-aspect-ratio configurations, with high and mid
horizontal-tail positions (configurations By and Bs).

The wing pivot was located at 36-percent semispan and 4b-percent chord
of the fully swept wing (based upon the low-aspect-ratio wing of configura-
tion B). The fixed portion of the wing was provided with either 70° or 759
leading-edge sweep.

Planform Geometry

Geometric details of the high-aspect-ratio configuration (A) and the low-
aspect-ratio configuration (B) can be found in tables I and II, respectively.
A sketch including pertinent dimensions of the model is shown in figure 2.

The airfoil section for the movable wing had a flat lower surface and
the thickness distribution of an NACA 65A006 airfoil section. See table III
for wing airfoil coordinates.

The lower aspect ratio of configuration B was obtained by removing
3-1/2 feet of wing tip from configuration A.

Fixed-wing section geometry is detailed in figure 2(c) by cross sections
at various fuselage stations. Planform details are given in figure 2(d).
The basic leading edge was sharp along its entire length. However, an
alternate, rounded leading edge shown in figure 2(e) was also tested. This
rounded leading edge tapered from a radius of 3 inches at the fuselage junc-
ture to 0.75 inch (wing leading-edge radius at movable-wing juncture).

The fuselage consisted of a blended wing-body section, as shown in
figure 2(c), with an undersliung, side-by-side engine nacelle with plugged,
two-dimensional inlets faired to the rectangular aft fuselage shown in
figure 1.

Horizontal Tail
The horizontal tail was tested in three positions (see fig. 2(b)): low,
mid, and high. In the low position it was mounted on the fuselage at 10 per-
cent ¢ (of 25° sweep) below the wing-chord plane; in the mid position it was

mounted on the vertical stabilizer at 10 percent ¢ above the wing-chord
plane; in the high position it was also mounted on the vertical stabilizer,
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at 50 percent ¢ above the wing-chord plane. Because of the sweepback of the
vertical stabilizer, horizontal-tail length (ZT) varied for the three posi-
tions. Two horizontal-tail sizes were tested in the high position.

For all tests of configuration A;, the low tail was at a negative
dihedral of 10°.
High-Lift Devices

Fixed-wing high-1ift devices.- Details of the plain flap of the fixed
wing are shown in figure 2(d).

A simulated Krlger type flap was tested on the leading edge of the fixed
wing, with both sharp and rounded fixed-wing leading edge (see fig. 2(e)).

Movable-wing trailing-edge double-slotted flap system.- The double-
slotted flap geometry and a typlcal cross section are shown in Figure 2(f).
The vane was T- 1/2 percent of the wing chord, streamwise, with the wing at
25° sweep. The main flap comprised 25 percent of the wing chord. A slot of
2-percent wing chord was maintained at the vane. Flap deflections ranged
from 30° to 60° in 10° increments. The slot geometry was modified to improve
flap performance. The modification (fig. 2(f)) consisted of adding sheet
metal extensions to the wing trailing-edge shroud and vane and was used for
all tests of double-slotted flaps unless otherwise noted.

Movable-wing trailing-edge single-slotted flap system.- The single-
slotted flap configuration was achieved by removal of the vane of the double -
slotted flap and moving the flap forward into the wing. This reduced the
wing chord by U4 percent and accounts for the difference in wing area and
aspect ratio between the two flap systems. A slot of 2-percent wing chord was
maintained at all flap deflections, and the range of flap deflection was from
0° to 300, 409, and 50°. The geometry and cross-section details of this flap
system are given in figure 2(g).

Both flap systems were constructed in three sections, extending (as shown
in fig. 2(a)) from 20 to 52 percent semispan, from 52 to 67 percent semispan,
and from 67 to 98 percent semispan of the high-aspect-ratio wing. As a
result, flap deflection notation is indicated in three parts:

& = inboard deflection/middle deflection/outboard deflection

Movable-wing leading-edge slats.- The details of leading-edge slat size,
deflection, and positioning are shown in figure 2(h). Two sized slats were
tested, one having a length equal to 15-percent streamwise wing chord (at
25° sweep), and the other, 18-3/L-percent wing chord. The profile of the
0.15¢c slat was made to match the leading-edge profile of the wing. The
0.1875¢ slat incorporates the basic 0.15c¢ slat with a rounded leading-edge
extension to provide camber as shown in the figure. Slat deflection, dg, is
given relative to its undeflected position as if it were "gloved" onto the




wing. Slat gap, gg, was varied from O- to 2-percent chord in 1/2-percent
increments. Unless otherwise noted, all slat data reflect the use of the
basic slat of 0.15¢c length.

TESTING AND PROCEDURE

Six-component force and moment data were obtained by conventional wind-
tunnel testing methods through an angle-of-attack range from -4° to +22°, and
an angle of sideslip from -12° to +4°. Free-stream dynamic pressure was
15 pounds per square foot, corresponding to a Reynolds number of 16 million,
based upon mean aerodynamic chord at 75° wing sweep.

The majority of tests were directed toward the development of high-1if+t
devices and the investigation of longitudinal stability characteristics for
landing and take-off configurations.

REDUCTION OF DATA

Corrections

Standard corrections were applied to angle of attack to account for wind-
tunnel wall effects. The corrections accounted for the variations in span due
to wing sweep. Measured drag was corrected in accordance with the angle-of-
attack correction. In addition, the following correction was added to drag
measurements to account for strut tares:

A0y = 0.0036
No &Cp correction was made for tunnel-wall corrections for tail-on conditions
due to the variable-sweep nature of the configuration.
Reference Dimensions

The computation of force and moment coefficilents for all wing sweeps of
a given configuration was based on the dimensions corresponding to the total
wing area, including fixed wing, at the T5° sweep condition of that particular
configuration.

Moment Center

The moment center for all configurations, regardless of wing sweep, was
taken on the axis of the wing pivot, 2.875 inches above the wing-chord plane.
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RESULTS

The acquisition of data for this investigation covered four testing
periods and the several configurations previously mentioned. The results in
figures 3 through 48 present longitudinal characteristics and selected cases
include lateral-directional characteristics. These results are summarized in
figures 49 through 56 and are discussed more completely in the Discussion
section of this report. Table IV is a complete index to the figures.

DISCUSSION

General Characteristics

Aspect ratio.- Figure 49 presents a comparison of the test data for wings
of aspect ratio 6.9 and 8.4 at 25° of wing leading-edge sweepback and with
high-1ift devices installed. At 12° angle of attack, for instance, there is
an incremental loss of 6.5 percent CI, in reducing aspect ratio from 8.4 to
6.9, accompanied by a decrease in stability of 5-percent static margin. The
reduction in aspect ratio causes a lower lift-curve slope, but it is shown
that for this degree of wing sweepback, there is essentially no difference in

Clmax

Wing sweep.- Figure 50 shows the effects of 13-1/2° and 25° wing sweep
for both the flaps-up and flaps-down conditions. In the case of 400 flap
deflection, it is seen that there is no appreciable benefit to be derived by
a wing sweepback angle of less than 25°, in terms of a "usable" CIpg.s or
that Cp, at which pitch-up occurs. Changes in 1lift due to wing sweep for the
flaps-up condition are also very small. Note that the aerodynamic-center
shift due to wing sweep from.l3—l/20 to 25° with flaps up amounts to 8-percent
static margin and is essentially the same as the change in static margin due
to 40° of flap deflection at 13—1/20 of wing sweep. (The static margin change
duc to flap deflection, however, is a result of the downwash flow at the
particular horizontal-tail location, since no change is indicated in the tail-
off data of figs. 3¢ and 37.)

Longitudinal Stability

As mentioned in the Introduction, variable-sweep configurations generally
have unstable pitching-moment characteristics at high 1ift coefficients. The
reason is that a wing-tip stall progressing inboard (based on tuft observa-
tions) is further aggravated by a vortex generated along the highly swept
leading edge of the fixed wing delaying inboard stall. The size and sweep of
the fixed-wing portion contribute to the strength of this vortex. Part of
this investigation involved testing horizontal -fail pocitions in combination
with var tous flow control devices in order to alleviate this problem.



Effect of fixed wing.- Figure 24 shows that reducing fixed-wing leading-
edge sweepback from 75° to TOC increases longitudinal stability approximately
T percent and correspondingly increases maximum 1ift coefficient by 7 percent.

Effect of horizontal tail.- Figure 51 summarizes the effects of
horizontal-tail location and size on pitching moment. The only tail position
that gave reasonably linear pitching moment up to high 1lift coefficients was
the low position, located 10 percent of the 250 sweep & below the wing-chord
plane. Placing the tail at a high position (50 percent & above the wing-
chord plane) caused a severe pitch-up at 1lift coefficients of 1.4. The tail
midway between the high and low positions was somewhat better than the high
tail position, but the longitudinal characteristics were still unsatisfactory.

Figure 52 presents the control effectiveness (0Cy/diT), for two of the
horizontal-tail configurations Jjust discussed, and effective downwash angle
(eav) and tail angle of attack (ap ) for the tail in the high position.

These curves were obtained from cross plots of pitching moment versus angle

of attack for various values of tail incidence. It 1s shown that, for both
tail positions, the OCp/dip curve has virtually no change in slope up to

12° angle of attack, indicating no change in tail efficiency factor. However,
above 12° angle of attack for the high tail, the changing downwash field
causes the tail angle of attack (ap) to fall back to zero at 16° wing angle

of attack so that the stability contribution of the tail is lost. This effect
is primarily due to the vortex generated by the fixed-wing leading edge. At
the same time, above 12° wing angle of attack, there is a reduction in control
power (JCp/dim) for the high tail, indicating a reduction in dynamic pressure
at the horizontal tail. On the other hand, the low tail is not adversely
affected by the wing downwash field (as illustrated by increasing OCp/dim)
above 12° angle of attack.

Flow-control devices.- Reduced fixed-wing sweepback and certain flow-
control devices on the fixed-wing leading edge were effective in alleviating
the reduction of longitudinal stability at high angles of attack. Figure 53
shows the effects of these control devices on pitching moment. With the tail
in the low position, deflecting a large portion of the fixed wing about a
hinge line along the fuselage juncture (similar to a plain leading-edge flap)
essentially eliminated the unstable pitching moment break at the stall. A
Krliger flap used with a large leading-edge radius (see fig. 2(e)) improved the
stability at the stall but, as shown in figure 53, not sufficiently to over-
come the large destabilizing moment contribution of the horizontal tail in the

high position.

The improvements in stability resulting from the use of these control
devices confirm that the stability problems are associated with the vortex
shed from the fixed-wing leading edge. These devices delay formation of this
vortex and thus tend to alleviate the instability.

Maximum Lift

Trailing-edge flaps.- Figure 54 summarizes the effects of both single-
slotted and double-slotted flap systems. The full-span double-slotted flap

8
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had a 0.3 greater 1lift increment at zero angle of attack. For both full-span
flaps CIpyax Vvas essentially the same, with the double-slotted flap achieving
Clopnx 2t 15° angle of attack, 3° earlier than the single-slotted flap. With
part-span deflection (outboard flap undeflected) the 40° single-slotted flap
achieved higher Crp., than the 50°© double-slotted flap partly because of a
higher lift-curve slope. Tuft observations indicated that double-slotted

flap effectiveness was reduced at higher angles of attack by the fixed-wing
vortex effect.

Figure 55 shows the effects of the amount of flap-span deflected.
Deflection of the outboard flap sections produced an increase in 1ift through
nearly the entire range of 1ift coefficients, including CIpg,,. However, the
additional nose-down moment produced by the outboard flaps resulted in a trim
requirement which, for all practical purposes, cancelled the advantage in
maximum 1ift coefficient.

Leading-edge slats.- A limited program to optimize wing leading-edge slat
deflection and gap size was conducted with the low-tail, high-aspect-ratio
configuration (Ai). Figure 56 presents a summary of the results at a wing
sweepback of 13—1/20 with 50° full-span double-slotted flaps. The effects of
these slat variables on maximum 1ift coefficient are shown and were used to
tailor the slat geometry for subsequent testing.

Lateral-Directional Stability

No unusual lateral or directional stability characteristics were evident
in any of the configurations tested (see figs. 10, 13, 36, and 41). The model
had directional stability and positive effective dihedral up to the stall
angle of attack.

SUMMARY OF RESULTS

1. The results show that all configurations tested, except one, were
longitudinally unstable at high 1ift. The one configuration that essentially
eliminated this instability at stall consisted of a drooped fixed-wing
leading-edge with the high-aspect-ratioc wing at 25° of wing sweepback, in
conjunction with the low horizontal-tail position.

2. No solution to longitudinal instability was achieved with the hori-
zontal tail in any other than the low position (10 percent of the 25° sweep
¢ below the wing chord plane).



3. Results indicate that, for the low-speed configuration, reducing wing
sweepback below 259 yielded no appreciable benefit in terms of a usable
maximum 1ift coefficient (or that Cp, at which longitudinal instability
occurs) . :

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 27, 1965
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Wing:

TABLE I.- MODEL GEOMETRY OF CONFIGURATION A

NACA 65A006 modified airfoil; O° twist, incidence, and dihedral

Movable wing

AN

Total wing

MLE [
o High—asﬁéct-ratio geéméfri, double-slotted flaps
M E Span | Area | AR A App g | Area | AR ¢

13-1/2° | 56.7 | 369 | 8.7 |0.343 70° {ho1 (6.6 |12.75
75° | 540 | 6.0 {15.80
259 54.3 | 367 | 8.0 | .337 70° {483 1 6.1 |12.80
750 26.6 | 462 | 1.5 .343 700 {462 1.5 [19.44
75° 26.6 | 510 | 1.4 { .470 75° {510 | 1.4 [22.47

' High-aspect-ratio geometry, single-slotted flaps
13-1/2° | 56.7 | 350 | 9.2 | .34k 700 | 473 6.8 {12.75
250 54.3 1 350 | 8.4 .338 70° | 466 | 6.3 [12.95
550 Lo.2 | 378 4.3 3hk 70° | 45h |1 3.6 [14.51
750 1 26.6 | 486 | 1.5 | .47 70° |437 |1.6 [19.83

Low horizontal tail (Aj)

7 AE | Span | Area | AR c U

Total area 60° | 19.4 {169 | 2.2 | 10.0{ 15.8

Exposed area | 60° | 19.4 | 110 3.4 8.0 20.1

High horizontal tail (Az)
Large tail 60°{15.0 [1112 | 2.0 8.0]27.9
Small tail 60° |11.6 | 67 | 2.0 6.8127.9
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Wing:

TABLE II.- MODEL GEOMETRY OF CONFIGURATION B

NACA 65A006 modified airfoil; O° twist, incidence, and dihedral

Movable wing

A

ALE

Low;aspect-raﬁio geometry,

AyLE Span | Area | AR A ApTR
13-1/2°| 49.6 | 325 (7.6 |0.k32| TO°
180 48.51325 |7.2 Jdeg | 700
259 7.4 32k [6.9 A5 | 700
320 43,0327 5.7 430 70°
55° | 3%.9(352 |3.5] .53 T0°
75° 24,71 460 [1.3 .590 | T0°

Total wing

\ L1

Area

hh7
Lh
4ho
43k
4o8
Y12

High horizoptalrtailACBl)"

ALE

Span | Area

Total area

60°

15.0 | 111

Mid hor

Total area

60°

15.01111

AR

izontal tail (Bs)

2.0

c

2.0 8.0

AR

s;ggle—slotted flaps

g
13.35
13.40
13.50
13.90
15.20
20.75

5

H O EaruU
U Cow Hw '\

8.0




TABLE III.- WING AIRFOIL ORDINATES (MOVABLE SECTION); MODIFIED NACA 65A006;
0° TWIST, INCIDENCE, AND DIHEDRAL

Streamwise section, Ay, =25°

x/c Zu/C Zz/c

Looo|  .06219
L4500 .06240
.5000| .06167
.5500| .05969
.6000 .05625
.6500 .05208
L7000 .o4688
L7500 .ok1ok .00604
.8000 .03458 .00604
.8500 .02750 .00604
.9000 | .02052 | .0060L
.9500 .01333 .00604
1.0000 .0060L .0060L4

0 0.00727 { O
.0073 01498 | 0
.0086 .01533 |0
.0130 01672 10
L0260 | .02044 | O
.0500| .02667 |0
.0780| .03315 |0
.1000| .03729 |0
.1500| .O4k79 | O
.2000| .05052 | O
.2500| .05500 | O
.3000| .05844 | O
.3500 .06083 | 0

0
0
0
0
0
0
0
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TABLE IV.- INDEX TO FIGURES

I

Configuration Ax:

high-aspect-ratio wing, low horizontal tail

Effect of: Wing sweep g%é:%ﬁgéﬁg Tra%%égg—edge Figure number
Clean configuration 13-1/2 70 0/0/0  FSS 3
Clean configuration 25 L
Clean configuration 55 5
Clean configuration (P } 6
Single-slotted trailing-edge flaps: 13-1/2 70 30/30/0  FSS | 7
Part-span deflection Lho/ho/0  FSS 8
Full-span deflection Lo/40/40 FSS 9
Part-span deflection 25 30/30/0  FSS 10
Part-span deflection ho/40/0  FSS 11
Full-span deflection ' 30/30/30 FSS 12
Full-span deflection Lo/ho/h0  FSS | 13
Double slotted trailing-edge flaps: 13-1/2 variable ¥DS 14
Full-span deflection 13-1/2 50/50/50 FDS 15
Part-span deflection 'i 25 30/30/0  FDS 16
Part-span deflection ! 50/50/0  ¥DS 17
Full-span deflection ! 30/30/30 FDS 18
Full-span deflection ! 40/40/40 ¥DS 19
Full-span deflection , v 50/50/50 FDS 20
, Full-span deflection | 13-1/2 75 - 50/50/50 FDS 21
Teading-edge slat geometry - 13-1/2 ¥ - 50/50/50 FDS 22
Leading-edge slat geometry 25 70 Vho/ho/h0  FSS 23
Fixed—wing sweepback | 13-1/2 70,75  50/50/50 FDS ol
Fixed-wing leading-edge radius [ ™ variable FDS 25
Fixed-wing leading-edge flap deflection ' ; i@ |50/50/5O FDS 26
Fixed-wing leading-edge flap deflection 25 70 - ho/ho/h0  FSS 27
Configuration As: high-aspect-ratio wing, high horizontal tail
Fixed-wing leading-edge radius and flap deflection 25 70 Lo/ho/0  FSS 28
Horizontal-tail size 25 70 ho/h0/0  FSS 29
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TABLE IV.- INDEX TO FIGURES - Concluded

Configuration Bj:

low-aspect-ratio wing, high horizontal tail

Fixed-wing

f Effect of: |Wing Sweep‘sweepback Trailing-edge flaps nuTber
Clean configuration 18 70 y 0/0/0  FSS 30
Clean configuration 25 ‘ 31
Clean configuration 32 l 32 :
Clean configuration 55 33
Clean configuration 5 34
High-lift configurations 18 ‘ 40/40/0  FSS 35
High-1ift configurations 25 Lo/k0/0  FSS 36
High-1ift configurations 25 50/50/0  FSS 37
High-1ift configurations 32 Lo/h0/0  FSS 38
Fixed-wing radius and Krlger flap 18 ho/k0/0  FSS 39
Fixed-wing radius and Kriiger flap 18 Lo/h0/40 FSS Lo
Fixed-wing radius and Kriger flap 25 Lo/40/0  FSS N}
Fixed-wing radius and Kriiger flap ho/ho/0  FSS ko
Fixed-wing radius and Kriiger flap 1 Lo/ho/h0  FSS 43
Fixed-wing radius and Kruger flap 18 Lo/k0/0  FSS Ly
Leading-edge slats and fixed-wing geometry 25 1 Lo/h0/0  FSS L5
Configuration Bs: low-aspect-ratio wing, mid horizontal tail
Fixed-wing Krlger flap deflection 25 70 ko/ho/0  FSs L6
Fixed-wing Kriiger flap deflection l L7
Fixed-wing Kriger flap deflection 48
Summary plots

Aspect ratio, tail off 25 70 - Lo/Lo/0 FSS Lg
Wing sweep, tail on 13—1/2,25 variable FSS 50
Horizontal-tail location 25 Lo/ko/0  FSS 51
Horizontal-tail effectiveness Lo/k0/0  FSS 52
Fixed-wing leading-edge radius and flap deflection variable FSS 53
Single-slotted and double-slotted flaps variable FSS and FDS 54
Amount of flap span deflected variable FSS 55
Leading-edge slat geometry 13-1/2 75 50/50/50 FDS 56
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(a) Configuration Aj;: low tail, aspect-ratio-8.L4 wing.

Figure 1.- Photographs of the model mounted in the Ames 40- by 80-foot wind tunnel.

A-30876




3T

(b) Configuration As:  high tail, aspect-ratio-8.k wing .

Figure 1.- Continued.

A-31298
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(c) Configuration By: high tail, aspect-ratio-6.9 wing.

Figure 1.- Continued.

A-31299
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(a)

Configuration Bs: mid tail, aspect-ratio-6.9 wing.

Figure 1.- Concluded.
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65.30 -

Al |l dimensions in feet

(a) Ceneral details of configuration Aj.

Figure 2.- Geometric details of the model.
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(b) Details of horizontal-tail locations.
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Figure 2.- Continued.
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(c) Cross-section details of fixed wing.
Figure 2.- Continued.
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Movable wing

NPivot point
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Fuselage §-

75°A flap

Defl.

70° A flap Section A—A

(Showing hinge line on fuselage)

(d) Details of fixed-wing leading-edge plain flap.

Figure 2.- Continued.
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Tapers from 20" at large end, fuselage to .75" (wing L.E.
to 6:' as shown. radius at movable-wing
\ZIZO long, juncture.)
Sharp flap leading edge Large L.E.radius Large L.E.radius & Kriiger flap
with Kriiger flap on fixed—wing L_.E. flap on fixed—wing flap L.E.
Section A-A

(e) Details of fixed-wing leading-edge radius and Kruger flap.

Figure 2.- Continued.
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Slot—geometry
modification

Flap section taken perpendicular
to 772c¢, with AWLE =25°

Deflected 30°

Coordinates of double—slotted flap along streamwise direction, with Ay, p=25°

Vane Flap Vane Flap
x/cyw | Zy/ew | Z/cw x/cy | Z/cy x/ew | zZylew | z/cw x/Cyw | z/Cy
6800 | 0035 — 7500 {.00548 7015 | 0250 | 0103 (| .8500 (| 214
6803 | .0047 | .0022 || .7555 | .Ol2I 7077 | 0277 [ .0145 Straight line
6807 | 006! | .00I5 || .7600 | 0148 7141 | 0299 | .0I86 [[1.O00O | .00I6
6816 | .0084 | .0007 || .7700 | 0187 7207 | 0312 |.0225
6835 | 0lle 0 7800 | .0215 7273 | 0322 | 026! |[LE radius=00548
6853 | .0140 | .0004 || .7900 | .0236 7342 | 0329 |.0290
6872 | 0I56 | .00I0 || .BOOO | .0249 7414 | 0334 | 0314
6888 | 0172 | 0018 8100 | .0256 7450 | .0335 | .0325
6921 | 0197 | 0037 | .8200 | .0254 7486 | 0332 | .0332
6953 | 0217 | 0059 || 8300 | 0242

(f) Details of the double-slotted flap.

Figure 2.- Continued.
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Coordinates of single—slotted flap along
streamwise direction with Ay, g=25°

T9cy —Gap dimensions same for all flap deflections

T e~ Undeflected

T —

x/c Flapﬁg y/c Flap !
0 02192
022 | 0484 |
040 | 0592
080 0748
120 .0860
160 0944
200 0994
240 1023
280 1016
320 0968
.400 0856
Straight line
1000 | 00648
L.E.radius=.02192

(g) Details of the single-slotted flap.

Figure 2.- Continued.



For gap (gg) =0020c¢
8g = 10°, 20°,30°% Slat T.E. was positioned
to be _Lto a wing L.E. radius line as shown
8 = 25° 35°% Slat was rotated with T.E.

in same position as for §5=30°

For all other gaps (gg):

Slat was translated along
a vertical to the wing
chord plane.

@ Slat translated aft & down
to seal gap (fig. 23 (@) only)

@ Slat translated vertically from
sealed—gap position to gap=.005¢
(fig. 23 (b) only)

Details of leading—edge slat positioning for sealed gap & .005¢ gap

Contoured to wing
upper surface

V2o

</

05¢ radius bend
\fhrough 45°

ozc

Details of 1875¢ siat
(h) Details of movable-wing leading-edge slats.

Figure 2.- Concluded.
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(a) Longitudinal characteristics with flaps up; slats on and off.

Figure 3.- Characteristics of cruise configuration at 13—1/20 sweep.
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(b) Longitudinal characteristics including cruise lift-drag ratio.

Figure 3.- Concluded.
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(a) Longitudinal characteristics with flaps up; slats on and off.

Figure 4.- Characteristics of cruise configuration at 25° sweep.
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(b) Longitudinal characteristics including cruise lift-drag ratio.

Figure 4.- Concluded.
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(a) Longitudinal characteristics with flaps up; slats on and off.

Figure 5.- Characteristics of cruise configuration at 550 sweep.
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(b) Longitudinal characteristics including cruise lift-drag ratio.

.~ Concluded.

Figure 5
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(a) Longitudinal characteristics with flaps up; slats off.

Figure 6.- Characteristics of cruise configuration at 75° sweep.
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(b) Longitudinal characteristics including cruise lift-drag ratio.

Figure 6.- Concluded.
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Figure T.- Longitudinal characteristics of 300 partial-span single-slotted flaps at 13—1/20 sweep.
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(a) Longitudinal characteristics with tail incidence.

Figure 8.- Characteristics of 40° partial-span single-slotted flaps at 13—1/20 sweep.
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(b) Longitudinal characteristics at constant sideslip.

Figure 8.- Continued.
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(c) Lateral characteristics at constant sideslip.

Figure 8.- Continued.
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Figure 8.- Concluded.
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Figure 9.- Characteristics of 40° full-span single-slotted flaps at 13—1/20 sweep.
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(a) Longitudinal characteristics with tail incidence.

Figure 10.- Characteristics of 30° partial-span single-slotted flaps at 250 sweep.
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(b) Longitudinal characteristics at constant sideslip.

Figure 10.- Continued.
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(c) Lateral characteristics at constant sideslip.

Figure 10.- Continued.
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Figure 12.- Characteristics of 30° full-span single-slotted flaps at 250 sweep.
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(a) Longitudinal characteristics with tail incidence.

Figure 13.- Characteristics of 40° full-span single-slotted flaps at 25° sweep.
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Figure 13.- Continued.
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(¢) Lateral characteristics at constant sideslip.

Figure 13.- Continued.
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Figure 14 .- Effect of double-slotted flap deflecticn at 13—1/20 sweep.
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Figure 15.- Characteristics of 50° full-span double-slotted flaps at 13-1/2° sweep.



Gg

e
N T‘)Le
s
Adfé‘;;_ ?% 4
- ; Ha o
RS S Y
i M N -
4 " .x:!x
N i
I S
1 A [y
- ———
AgLg: 25° S 1 —
Ap g 70° - A
reLEs Sharp = 'go —~1Lv j 3%7,;
SpLe: O° “o-io° P *J'! I
FLE: Plain ~ O -20° L{J ‘{ - ;i;
8g:30° T A& Off . ;;3; F
gs 00S5¢ ~ i,i J 15
: 30/30/0 — ‘{

Figure 16.- Characteristics of 30° partial-span double-slotted flaps at 25° sweep.
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(a) Longitudinal characteristics with tail incidence.

Figure 17.- Characteristics of 50° partial-span double-slotted flaps at 25C sweep.
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Figure 17.- Continued.
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Figure 18.- Characteristics of 300 full-span double-slotted flaps at 25° sweep.
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Figure 19.- Characteristics of 40° full-span double-slotted flaps at 25° sweep.
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(a) Longitudinal characteristics with tail on.

Figure 20.- Characteristics of 50° full-span double-slotted flaps at 25° sweep.



PR - N T s e, RTINS i o o

€9

Plain
: 30°
: 005¢
: 50/50/50

i -15°

(b) Longitudinal characteristics at constant sideslip; tail on.

20 O A .2 .3 4
Co

Figure 20.- Continued.




79

_CONFIG: A,
~ Ap 700
Bre’ O°
8g: 30°
S¢ps: 50/50/50

02 -06 -04 -
Cy Cn Cq

(c) Latersl characteristics at constant sideslip; tail on.

Figure 20.- Continued.
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(4) Lateral characteristics at constant angle of attack; tail on.
Figure 20.- Continued.
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(e) Longitudinal characteristics at constant sideslip; tail off.

Figure 20.- Continued.



L9

MLl g
=R ARy _.iég A
== =B
47: ) 'ﬁk"; ==
== E.k ¥
= E=— e
i =
=" CONFIG: = ===
:;: AWLE: 25° E Fis
= Ap g: 70° ==
rece: Sharp =
8FLE: 0° ==
FLE: Plain

»

8g: 30°
ds: 005¢

SFDS: 50/50/50

TR

Qi
-10

-08

-06

-04 -02 0 02 -04 -02 0 02 -06 -04 -02
Cy Cn

(£) Lateral characteristics at constant sideslip; tail off.

Figure 20.- Continued.
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Figure 20.- Concluded.
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(a) Longitudinal characteristics with tail incidence.

Figure 21.- Characteristics of 50° full-span double-slotted flaps at 13-1/2° sweep and 75° fixed-wing
sweep.
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Figure 21.- Continued.
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(d) Lateral characteristics at constant angle of attack.
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(a) Longitudinal characteristics for various slat positions.

22.- Leading-edge slat effects at 13-1/2° sweep with double-slotted flaps at

50° full-span.
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Figure 22 .- Continued.
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Figure 36.- Characteristics of low-aspect-ratio wing at 25° sweep, L40° partial-span flaps, horizontal
and vertical tail on and off.
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(b) Longitudinal characteristics at constant sideslip; tail on.

Figure 36.- Continued.
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(2) Longitudinal characteristics with tail incidence.

Figure 41.- Characteristics of low-aspect-ratio wing at 25° sweep, with large fixed-wing leading-edge
radius and Kruger-type flap.
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(d) Lateral characteristics at constant angle of attack.
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Figure 142.- Characteristics of low-aspect-ratio wing at 25° sweep, with large fixed-wing leading-edge
radius and Kriger-type flap; tail off.
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Figure 42.- Concluded.
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Figure 46.- Effect of slat type and fixed-wing Kruger flap deflection on mid—tail configuration, Bs.
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Figure 47.- Effect of fixed-wing Krlger flap deflection on longitudinal characteristics with basic
(0.15c length) slat and 40° partial-span single-slotted flaps , mid-tail position, configuration Bs.
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Figure 48.- Effect of modified slat (0.1875c length) geometry and Kriiger flap deflection on mid-tail
configuration Bs.
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